NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification.

نویسندگان

  • Hui Li
  • Leyu Wang
چکیده

Upconversion luminescence is an anti-Stokes' emission process by converting long wavelength near-infrared (NIR, 980 nm) irradiation into shorter wavelength visible light emission, which demonstrates many advantages including no autofluorescence, low damage to samples, no photobleaching, and high sensitivity. Based on the Rhodamine B thiolactone (RBT) functionalized NaYF(4):15%Yb(3+),5%Er(3+) (UCNPs@RBT) nanocomposites, an ultrasensitive, selective, and rapid upconversion luminescence resonance energy transfer (UC-LRET) sensor has been developed for the detection of mercury ions (Hg(2+)) in water. Upconverting luminescence resonance energy transfer from the UCNPs to the RBT derivates occurs after the addition of Hg(2+) ions into the UCNPs@RBT colloidal solution. This UC-LRET recognition of Hg(2+) can be finished within 1 min and other cations have no influence on the detection of mercury ions. This newly developed sensor demonstrates high selectivity toward the mercury ions and enables ultrasensitive and rapid detection of mercury ions in water in the range of 5 nM to 10 μM with a 3σ limit of detection of 3.7 nM. This sensor can be used for a naked-eye detection of Hg(2+) ions via its green upconverting luminescence response under the infrared excitation (980 nm) with the merit of no autofluorescence interference and good photostability. In addition, by dipping the hydrogel of UCNPs@RBT nanocomposites onto the filter paper, a highly selective and convenient luminescent paper sensor for Hg(2+) ions was also developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-nm Excitation

In this paper, Nd3+-Yb3+-Er3+-doped β-NaYF₄ nanocrystals with different Nd3+ concentrations are synthesized, and the luminescence properties of the upconversion nanoparticles (UCNPs) have been studied under 808-nm excitation for sensitive biological applications. The upconversion luminescence spectra of NaYF₄ nanoparticles with different dopants under 808-nm excitation proves that the Nd3+ ion ...

متن کامل

Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level.

Strong red upconversion luminescence of rare-earth ions doped in nanocrystals is desirable for the biological/biomedical applications. In this paper, we describe the great enhancement of red upconversion emission (4F9/2 --> I15/2 transition of Er3+ ion) in NaYF4:Yb3+, Er3+ nanocrystals at low doping level, which is ascribed to the effectiveness of the multiphonon relaxation process due to the e...

متن کامل

Confining Excitation Energy in Er3+ -Sensitized Upconversion Nanocrystals through Tm3+ -Mediated Transient Energy Trapping.

A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion ...

متن کامل

Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we repo...

متن کامل

Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles.

A general approach to fine-tuning the upconversion emission colors, based upon a single host source of NaYF4 nanoparticles doped with Yb3+, Tm3+, and Er3+, is presented. The emission intensity balance can be precisely controlled using different host-activator systems and dopant concentrations. The approach allows access to a wide range of luminescence emission from visible to near-infrared by s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 138 5  شماره 

صفحات  -

تاریخ انتشار 2013